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LETTER TO THE EDITOR 

A Skyrme-like lump in two Euclidean dimensions 
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Abstract. Models consisting of a complex scalar field in R2 and featuring symmetry-breaking 
potentials, are proposed. These models possess topologically stable classical lumps. For 
a special subclass of these modcls, explicit solutions for these lumps can be found. The 
possibility of treating these lumps as solitons in ( 2 +  1) dimensions is briefly remarked on. 

There is currently considerable interest in field theories defined on (2 + 1)-dimensional 
Minkowski space, on the one hand [l] because of the fundamental insights into 
quantum field theory that such models offer, and on the other hand [2] because of 
their practical relevance to problems in condensed matter physics. 

In these investigations [ 1,2], the model used is the O(3) nonlinear sigma model, 
which at the classical level is equivalent to the CP' model. The distinguishing feature 
of the O(3) (and the CP') model is that it possesses topologically stable finite action 
(instanton) solutions discovered by Belavin and Polyakov [3], and these topological 
solutions are the static field configurations of the theory in (2+ 1) Minkowski space. 

From a certain viewpoint, one can regard the CP' field theory in (2+ 1) dimensions 
as the solution [4] theory of the CP' lump moving in the R2 space. Some classical 
aspects of this problem are studied by Forgics er a1 [ 5 ]  as well as by Ward [6] and 
Stokoe and Zakrzewski [7] using the method of Manton [8]. What makes the CP' 
model unusual as a solitonic [4] model is that, unlike for example the 'p4 and the 
sine-Gordon models, it is not endowed with a symmetry breaking potential and hence 
its 'soliton' cannot be localised to an absohte scale in R2. Indeed, due to the scale 
invariance of the CP' system in Rz, the scales of its lumps (namely the instantons) are 
arbitrary. 

This lack of an absolute localisation scale has an important consequence in the 
quantum theory [9]. Since instantons of arbitrary scales overlap, a dilute-gas approxi- 
mation involving only unit topological charge instantons cannot be justified; hence it 
becomes necessary to take into account all instantons. This last circumstance can give 
rise to problems in the treatment of the quantum CP' theory in (2+ 1) dimensions, as 
pointed out by Din and Zakrzewski [IO]. 

This brings us to the subject of the present letter. We propose an alternative for 
the nonlinear sigma models in R2, which also has topologically stable finite action 
solutions that are, however, localised to an absolute scale. We envisage that this 
localised lump may be treated as the soliton of the corresponding field theoretic model 
in (2 + 1) dimensions. 
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The model, which consists of a complex scalar field p ( x i ,  t ) ,  x, in R2, has two 
salient features. The first is that the Lagrangian includes a symmetry breaking potential, 
which exhibits a dimensional constant setting the absolute scale of the topologically 
stable lump solution in R2, in the static case. The second, and most crucial, feature 
is that it is endowed with a special quartic kinetic term. This is a Skyrme-like term 
that overcomes the well known obstacle due to Derrick’s virial theorem [4]. (There 
would be no objection to the presence of a quadratic kinetic term in addition, but this 
is not necessary.) 

In its most general form, the Lagrangian density is 

z= -i(  2 ia[,cpd”]cp*)2+f2(7, l(PI)l~,cP12-~2V(7, IcpI) (1) 

where xp = t ,  x i ,  with xi  = ( x l ,  x2) in R2, and the metric diag(1, -1, -1) for (2+1)- 
dimensional Minkowski space. A and 7 are parameters with the appropriate 
dimensions, f( 7, Icp I )  is some positive function with a suitable asymptotic behaviour 
in R2, consistent with Jinite energyt, and V(7, IpI) is a symmetry breaking potentialt. 
The square brackets in the quartic kinetic term denote antisymmetrisation, which 
implies that no power other than the square of the ‘velocity’ field docp will appear in 
(1). As a result, (1) can be looked at as a realistic dynamical model. The function 
f(7, IpI) may be taken to be independent of cp, or even equal to zero. 

In the special case wheref= ( q2 - Ipo(2)2 and V = ( v2 - lcp12)4, the static version of (1) 

(2) 3 0  = -[f(ia[icpaj1p*)2 +f2( 7, I ~ I ) I a i ~ I *  + A 2  v (  71, IP I ) I  E -9 
coincides with a subsystem of a model on R2, derived by dimensionally reducing [ l l ]  
the generalised Yang-Mills system [12] 

F M N R S  = { F M N ,  FRS}+cyc1(NRs) (3’) 
on R2 x S6.  It is interesting to note that the corresponding subsystem of the model 
derived from a similar dimensional reduction of the (usual) Yang-Mills system on 
R2 x S2  would have yielded the cp4 model, which has topologically stable (kink) solutions 
[4] in R, but not in Rz. 

This and other detailed properties of (1) and (2) will be given elsewhere. In the 
present letter, we restrict our attention mainly to the classical properties of the solutions 
of the field equations of (2), and comment briefly on some of the quantum mechanical 
properties of (1). 

( I )  Classical lumps. Perhaps the most remarkable feature of the solutions of the 
Euler-Lagrange equations of the static system Z0 given by (2) is that they coincide 
with the vortex-like field configurations 

p(x) = v R ( r )  eins (4) 
with r = G ,  8=tan-’(x2/x,), despite the fact that there is no U(l) (Maxwell) 
field in go. Clearly, this is a result of the special dynamics of the Skyrme-like term 
in Lo. 

That solutions of the form (4) exist, follows immediately from the fact that the 
action functional of (2), for the field configurations (4), has a manifestly positive 

t See equation (6a, b )  for restrictions on f and V. 
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definite expression. Such solutions must, of course, satisfy the finite-energy and 
smoothness conditions 

R ( r )  - 1 

R ( r )  - 0 .  

1-03 

,-bo 

The asymptotic condition ( s a )  can be related to the topological stability of the solution 
(4), by considering the following two inequalities: 

(Afl-iEijaipa,p*)ZzO (60 1 
lfaip - ifEijdjp*l2 2 0. ( 6 b )  

andf are polynomials in lpl, it is easy to see that the cross-terms 
in (6a, b )  will be total divergences. As a consequence of the inequalities ( 6 4  b )  then, 
we find the important inequality 

Provided that 

where the total divergence diRi is just the sum of the two cross-terms referred to above. 
For example, with the simplest choice of V = ( ~ ~ - ( ' p l * ) ~ ,  we have ai = 
- A i ~ , ( 2 7 ~  - Ip[*)p*a,'p. 

The right-hand side of (7) can be written as a line integral, and provided we require 
the asymptotic condition 

77 

this line integral will yield a winding number, which provides the topological lower 
bound for the integral on the left-hand side of (7). For the field configuration (4) this 
winding number is given by the integer n. Note that the asymptotic condition ( s a )  
agrees with (8). 

That the solution (4) is localised to an absolute scale can easily be verified (for 
given f and V )  by solving the linearised Euler-Lagrange equation for SR = R - 1, SR 
being a small deviation from the asymptotic value of R.  

The solutions discussed so far are not minimal field configurations, in the sense 
that they do not satisfy the Bogomolniy equations saturating the inequalities ( 6 a )  and 
( 6 b ) .  Indeed, the Bogomolniy equalities arising from ( 6 4  b )  are overdetermined and 
result in the trivial (vacuum) solution R = 1 only. There is, however, an interesting 
special case in which the Euler-Lagrange equations are solved by first-order Bogomol- 
niy equations, which can be explicitly integrated. 

This is the special case where the function f is equal to zero. In this case the 
Bogomolniy equation following from the inequality ( 6 a )  is 

A n =  iEijaicpa,p* (9) 

which clearly solves the Euler-Lagrange equations pertaining to the f =  0 subsystem 
of (2). In this case the inequality ( 6 a )  is saturated, and for the field configuration (4), 
the Bogomolniy equation (9) reduces to the following integral: 
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which for suitable choices of the symmetry breaking potential V ( R 2 )  = V(lcp1, T ) ,  can 
be integrated explicitly, and, with a suitably normalised Lagrangian density, the 
corresponding action on R2 would be equal to 27r times the topological charge n, since 
(9) implies that this is a minimal field configuration. For example, with the simplest 
choice of V = (77' - l q ~ l ~ ) ~ ,  and setting the arbitrary constant on the right-hand side of 
(10) equal to zero, we have R 2 =  1 -e-hr2'2, which satisfies the conditions (5a ,  b).  

We complete our discussion for these classical lumps by commenting on the zero 
modes of Dirac equations in their background on R2.  

It is well known [ 131 that the Dirac equation in the background of an Abelian-Higgs 
vortex on R2 can have zero modes only if the symbol of the Dirac equation features 
a term corresponding to the Yukawa interaction of the Dirac and Higgs fields. This 
is really because the symbol is descended from the four-dimensional Yang-Mills-Dirac 
system on R2xS2 by dimensional reduction [ l l ] .  (The same is true of the Dirac 
equation on R3 .) Thus on R2 (as well as on R3) the symbol of the Dirac equation must 
feature both the gauge connection Ai and the Higgs field cp. 

In our case for the system (2) on R2, the curious situation arises whereby we can 
find a non-trivial index (topological charge) with a Higgs field alone. In other words, 
the symbol of the Dirac equation in the background of our lump features only a 
Yukawa term with the Higgs field, and excludes the gauge connection term, and yet 
has normalisable zero modes. This is not surprising because the topological charge 
here belongs to a subsystem of the system descended from the dimensional reduction 
[ 111  of the generalised [ 121 Yang-Mills-Dirac system on R2 x S6. 

(11) Quantum properties. The quantum properties of our model given by the 
Lagrangian ( 1 )  are quite different from those of the CP' sigma-model in (2+1)  
dimensions. While the latter system has a local U( 1 )  gauge invariance, the system ( 1 )  
has only a global U( 1 )  gauge invariance, under cp + e'"cp. This means that unlike the 
CP' model, our model cannot be augmented by a Hopf term [ 101. As such therefore, 
quantum mechanically our system is more akin to the Skyrme model in ( 3 + 1 )  
dimensions rather than the CP' model in (2+1)  dimensions. (In some ways, our 
system is more akin to the Skyrme model also classically, namely that our lump in R2 
is, like the Skyrmion in R3,  localised to an absolute scale unlike the CP' instanton.) 

Based on this analogy, we adapt the discussion of the Skyrme model given by 
Adkins et a1 [14] to our model (1). 

Restricting our attention to the rotational collective coordinate a, which happens 
to be the parameter of the global U( 1 )  symmetry of ( l ) ,  we promote a to a dynamical 
variable a( t )  by allowing it to depend on time. Denoting our static lump configuration 
(4) by cpo = q ( r ,  e) ,  we substitute cp(r, 6, t )  = cpo(r, 0 )  e'""' into ( 1 ) .  The result is 

L = - M + ; A ~ . ~  ( 1 1 )  
where 

M = 2~ r[t(ia[ipOdjlqO*)2 +f( T,  I d  )Idipo12 + A V(I 901 )I  d r  (12a) I 
I A = 4.rr r(dilpo12)2 dr. (126) 

Then, in terms of the canonical momenta IT = d L / d d .  = Ad., we have the Hamiltonian 

1 
2A 

H = M +- T 2 .  
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The canonical quantisation prescription 7~ = -ia/aci, allows diagonalisation of H, 
yielding the eigenfunctions +(a) = exp iaa,  with eigenvalue a. Since a + a +27rv ( Y 
integer) leaves +(a) unchanged, we would have bosonic quantisation if we chose also 
a to be an integer. This would yield eigenfunctions analogous to those of the z- 
component angular momentum. But here a ( f )  is not the azimuthal angle ( 6  in (4)) 
related to the Cartesian coordinates x, y. Therefore, in the absence of this ‘physical’ 
condition, we have no reason to constrain a to be an integer. 

One of us (DHT) thanks the Alexander von Humboldt Foundation for supporting his 
visit to Kaiserslautern during August 1988, where this work was started. 
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